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Similarity solutions for viscous vortex cores 
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Results are presented for a class of self-similar solutions of the steady, axisymmetric 
NavierStokes equations, representing the flows in slender (quasi-cylindrical) 
vortices. Effects of vortex strength, axial gradients and compressibility are studied. 
The presence of viscosity is shown to couple the parameters describing the core 
growth rate and the external flow field, and numerical solutions show that the 
presence of an axial pressure gradient has a strong effect on the axial flow in the core. 
For the viscous compressible vortex, near-zero densities and pressures and low 
temperatures are seen on the vortex axis as the strength of the vortex increases. 
Compressibility is also shown to have a significant influence upon the distribution of 
vorticity in the vortex core. 

1. Introduction 
Vortex flows occur in nearly every area of continuum fluid mechanics - from the 

stirred fluid in a teacup to the flows in tornado funnels and hurricanes. An important 
instance of vortices in aerodynamics is the flow about a slender delta wing at  angle 
of attack, in which the rolling up of the vortex sheets over the leading edges produces 
a vortex pair. These leading-edge vortices often have a roughly axisymmetric core 
region where viscous effects are important, and velocity and pressure gradients may 
be large. 

Experimental studies of incompressible flows past delta wings a t  incidence have 
shown some remarkable features, including core velocities that are four to five times 
the free-stream values, accompanied by high gradients in the static and total 
pressures (Earnshaw 1961 ; Verhaagen & Ransbeeck 1990). Compressible flows past 
delta wings have shown similar velocity and pressure gradients, accompanied by 
near-vacuum values of density on the core axis (Monnerie 6 Werlt5 1968). 

Analytical and numerical investigations of incompressible leading-edge vortices 
have duplicated, at  least qualitatively, many of these results. The incompressible 
solutions of Hall (1961), Stewartson & Hall (1963) and Powell & Murman (1988) give 
axial velocity and static pressure values that agree fairly well with experiment. 
The simiIarity formulations of Long (1961), Sullivan (1959) and Lewellen (1962), 
developed to model the flows of confined vortices, show some features which might 
be expected to be seen in broader physical contexts as well, although the similarity 
coordinates used in these studies are rather specialized and not always rigorously 
justified. The present work generalizes the quasi-cylindrical, or ' slender ', vortex 
models, where variations in flow quantities are taken to occur predominantly in the 
radial coordinate, to include the effects of variations in the external axial flow field 
on the flow in the viscous core of the vortex. 

Theoretical studies of compressible vortices are few in number and have given less 
satisfactory results. The compressible model of Brown (1965) for an inviscid 
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rotational flow shows compressibility to have a boundary-layer effect on the velocity 
field, leading to finite values of the flow quantities on the vortex axis in contrast to 
the inviscid incompressible case, where velocities and pressure are singular there. 
Mack (1960) studied a viscous heat-conducting compressible vortex, but the flow 
field is a rather contrived one, with density becoming unbounded at  the surface of a 
rotating cylinder in the core which drives the flow. Hall (1966) has given qualitative 
arguments concerning some of the expected features of viscous compressible vortex 
cores, and simplified core models are important here because they lead to analytical 
and numerical solutions which can be more easily compared with such predictions 
and allow the effects of individual flow parameters to be examined in detail. 

2. Solutions for incompressible vortex cores 
2.1. Governing equations 

The governing equations are the equation of conservation of mass (continuity) and 
the NavierStokes equations of conservation of momentum, expressed in cylindrical 
polar coordinates r,  6 and z, with z taken to coincide with the vortex axis. In this 
study, there will be assumed to exist a value of the radial coordinate beyond which 
the density and axial velocity are independent of r ;  these 'free stream' quantities are 
denoted p,(z) and W(z) ,  respectively. For a steady, axisymmetric, laminar, 
incompressible flow the equations of motion are, in non-dimensional form, 

i a  aw 
--(ru) +% = 0, 
r ar 

where the radial and axial coordinates r and z are non-dimensionalized with some 
lengthscale L;  u, v and w are the radial, azimuthal and axial components of the 
velocity vector, respectively, non-dimensionalized with W( I )  ; p and p are the density 
and pressure, non-dimensionalized with pm and pm W( i), respectively. The Reynolds 
number is defined as 

, (2) Po0 W ( 1 ) L  Re = 
P 

where p is the viscosity of the fluid and p,(z) and W(z)  are evaluated at a non- 
dimensional axial distance of unity. 

2.2. Similarity variables 
The most practical way to simplify the above partial differential equations is to 
assume that flow quantities are self-similar relative to some set of coordinates. The 
following set of orthogonal coordinates is used in this study: 
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Here, q5 is a 'radial' and f; an 'axial' coordinate. The azimuthal coordinate 0 remains 
unchanged under the transformation. For various values of n, these coordinates 
represent mutually orthogonal families of curves in planes 0 = constant. For n = 1 
these are rays and circles, for n = they are parabolas and ellipses and for n = 0 the 
original coordinates are recovered, i.e. q5 = r and 6 = z. For the present analysis, only 
the radial coordinate is important -the full coordinate transformation might be 
needed if these coordinates lent themselves to some particular geometry of interest 
and one wished to formulate the full equations of motion in them. 

If axial derivatives are assumed to vanish in the transformed equations of motion, 
then the parameter n sets the rate of growth of the vortex with increasing z. If the 
radial extent of the viscous core is characterized by some location rcore, then n = + 
and n = 1 correspond to parabolic (rcore oc d) and conical (reore oc z) vortex growth, 
respectively. The n = 0 case represents a columnar vortex. The assumption of 
slenderness leads to the following rescaling for q5: 

&=q5/s, o < s 4  1 .  (4) 

The flow variables in ( 1 )  are now assumed to take the following form: 

The powers of the z in the scalings will be determined in each case by substitution 
into the equations of motion and requiring self-similarity to hold. FOP the appropriate 
balance of viscous and convective terms, Re x = O(1) which implies E = (l /Re):.  

2.3. A family of similarity solutions for viscous incompressibEe vortex cores 
The class of flows which will be considered is that of a slender viscous vortex in an 
external flow field having a power-law axial velocity. Substituting the self-similar 
forms of the flow variables (5) into ( 1 )  and dividing through by the coefficient of the 
highest-order derivative term in each results in the following set of equations : 

If the external axial flow is assumed to have the form 

W(z) = wlzm, (7) 
then requiring that all the coefficients in (6) be functions of & only leads to the 
following parameter values : 

n = g( l -m) ,  E = - f ( i + m ) ,  q = s = 0. (8) 
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The first of these reveals the manner in which viscosity couples the parameters m and 
n. For the flows to be physically reasonable, the total pressure of the external flow 
should be taken to be a constant, denoted (pa)e; this replaces the constant p m  
appearing in ( 5 d ) .  It should also be noted that the scaled radial coordinate, 

J(r ,  z )  = ( R e ) i r z v  (Re based on wl) ,  (9) 

has the same form as the similarity coordinate of the Falkner-Skan theory for the 
boundary layer over a flat plate. This means that the core of a self-similar 
incompressible vortex in an axial pressure gradient due to an axial velocity field of 
the form (7) should grow like the analogous Falkner-Skan boundary layer, assuming 
that the pressure takes the form ( 5 d ) ,  which implies that the static pressure 
coefficient is assumed to have no axial variation. The resulting equations are 

ii 
ii’+7-+(l-m)qJzz’+mzz = 0, (1Oa) 

q5 

( 1 0 d )  
- 1  

6”- ii-$(l-m)q52?,-- $1 6’+ d 1-m)P-m62-2my? = 0. [ 
The boundary conditions are taken to be 

6 = f i e  

p = p e  = -t(l+q) 
6 = o :  ir;j0, 6=6e‘e:  izz=l (loel 

where $e refers to the outer edge of the computational domain. The velocity 
boundary conditions are much as in the inviscid case described by Hall (1961), but 
the viscous nature of the flow now imposes the additional requirement that the swirl 
velocity and the gradient of the axial velocity should both vanish on the axis. The 
expression for the edge pressure results from noting that 

P e  = ba)e-$W(z) ( I+%) (11) 
by Bernoulli’s law, and solving for 9, in ( 5 d )  results in the given dependence of scaled 
edge pressure on edge swirl ratio. Note that in the above, q5e is formally a parameter, 
but the solutions rapidly approach limiting curves as $e becomes large relative to the 
extent of the viscous region. The solutions form a two-parameter family, depending 
only on the vortex strength as characterized by the swirl velocity, and m. 

2.4. The solutions for m = 0 
Hall (1961) considered the inviscid leading-edge vortex in a uniform external axial 
flow. Assuming conical self-similarity, he obtained an exact solution for the flow field 
in which the radial velocity varied linearly with the radial coordinate and both the 
swirl and axial velocities exhibited a log-like singularity on the vortex axis. This 
solution can be easily extended to the more general similarity variables given by (3), 
since the parameter n is decoupled from m in the inviscid case. An exact solution is 
obtainable for arbitrary n, this parameter acting only as a linear scaling in the radial 
velocity, the other flow variables being identical to those found by Hall. 
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FIQURE 1. Incompressible vortex (m = 0): swirl velocity. ---, Inviscid; -, viscous. 
6 

In the same paper, Hall developed a model of the viscous leading-edge vortex by 
matching the conical inviscid solution to a non-conical viscous inner solution. These 
solutions showed reasonably good agreement with the experimental data of 
Earnshaw (1961). Stewartson & Hall (1963) later corrected some inconsistencies in 
the matching procedure used in Hall (1961), the resulting solutions (to the 
asymptotic order given), however, appeared to be little different from those in Hall’s 
original work. 

The core model of Powell & Murman (1985) assumes steady flow, W = constant, 
conical self-similarity and slenderness in the viscous limit as Re+ 00, reducing the 
NavierStokes equations to a system of ordinary differential equations which are 
then solved numerically. The results show the same features as those of Hall, and 
form a one-parameter family of solutions, the single parameter characterizing the 
solutions being the maximum swirl velocity of the vortex. In  these solutions, the 
level of total pressure loss in the core depends only on the strength of the vortex and 
is independent of the Reynolds number (though the distribution of total pressure in 
physical variables is not) which is a desirable result, since this behaviour has also 
been seen in other numerical solutions of the Euler and NavierStokes equations for 
leading-edge vortex flows (Murman & Powell 1985; Powell 1989) as well as 
experiments (Monnerie & Wed6 1968). However, since in the previous section conical 
self-similarity was shown not to hold for the viscous core flow when m = 0, the 
solutions of (10) with the proper value of the core growth rate parameter, n = 8, are 
now considered. 

It should be noted that since only derivatives of the pressure appear in the 
equations in this case, the pressure coefficients will be independent of the edge 
pressure &. Also, the radial momentum equation (10 b)  in this case is decoupled from 
the other equations, allowing it to be integrated separately. The three coupled 
equations (lOa, c, d )  are rewritten as a set of five first-order equations which are 
linearized, discretized using a box scheme and solved numerically using a Newton 
iteration procedure. With a reasonable initial guess, convergence to double-precision 



492 E .  W .  itlayer and K .  G .  Powell 

0 4 8 12 16 20 

FIGURE 2. Incompressible vortex (m = 0) : axial velocity. ---, Inviscid ; -, viscous. 
4 

0 4 8 12 16 20 

i 
FIGURE 3. Incompressible vortex (m = 0) : radial velocity. ---, Inviscid ; -, viscous. 

machine zero typically takes only five or six iterations, on a grid h e  enough to 
provide a mesh-converged solution. Because the maximum swirl velocity (taken to 
define the extent of the core) in the vortex is not known a priori but rather is part 
of the solution, the solution algorithm iterates on the edge swirl iYe until the desired 
CmaX is reached in the converged solution. 

The solutions are presented in figures 14 .  Figures 1 ,2  and 3 show swirl, axial and 
radial velocity distributions for vortices of three different strengths. The swirl 
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FIQURE 4. Incompressible vortex (m = 0): static pressure coefficient. ---, Inviscid; 
-, viscous. 

B 

velocity distributions reveal a solid-body rotation near the vortex axis, with velocity 
reaching a maximum at a value of the scaled radial coordinate which is O(1) and 
decaying farther out. The axial velocity profiles show a jet-like overshoot on the axis 
which becomes quite pronounced as the vortex strength increases. The radial 
velocity is everywhere non-positive, indicating fluid entrainment into the core, and 
is nearly linear at large distances from the axis. It is evident that all three scaled 
velocity components are O( 1) in the viscous region, as desired. The figures show that, 
as the strength of the vortex increases, the magnitude of the radial velocity in the 
core increases markedly, indicating that the rate of entrainment of fluid into the core 
is increasing. For comparison, the corresponding inviscid solutions (i.e. the 
generalization of Hall’s inviscid solution to n = t )  are plotted as dashed lines in the 
figures. It can be seen that outside of the core region, the solutions are essentially 
inviscid (it is perhaps not obvious from figure 3 that the radial velocity profile 
asymptotically approaches the inviscid profile, but plotting the solution at larger 6 
shows this to be the case). Figures 4 and 5 show the static and total pressure 
distributions, with the static pressure coefficient C, and total pressure coefficient Cp0 
defined as 

The solutions show that the static pressure loss on the axis increases as Gmm 
increases; the total pressure loss in the core increases quadratically with G-. The 
scaled axial component of vorticity is defined as 

= (@I+;) ,  

and is plotted in figure 6. The vorticity is high in a narrow region near the axis and 
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FIQURE 5. Incompressible vortex (m = 0): total pressure coefficient. ---, Inviscid; 
-, viscous. 
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FIGURE 6. Incompressible vortex (m = 0): vorticity. ---, Inviscid; -, viscous. 

drops off rapidly farther out. One interesting feature seen in the vorticity plots is that 
the vorticity of the viscous solution is actually larger than that of the inviscid 
solution in a small region just away from the axis. This appears to be purely a viscous 
displacement effect, the viscous layer near the axis causing this region of higher 
vorticity to be pushed outward. 

Figures 7 and 8 compare the present results to the recent experimental data of 
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FIGURE 7.  Comparison with Verhaagen & Van Ransbeeck : swirl velocity at 70 YO chord. 
- , v = I . - - -  , , v, = 10; 0,  experiment. 

Verhaagen & Van Ransbeeck (1990) who studied the leading-edge vortices produced 
at  low Mach numbers by a large half-model delta wing at  an angle of attack of 20.4', 
with a free-stream Reynolds number based on root chord of 3.8 x lo6. Pressure and 
velocity measurements were obtained using a thin 5-hole probe connected to a 
miniature pressure transducer. Traverses perpendicular to the wing were carried 
out at four axial locations along the wing - at 10, 30, 50 and 70% chord. In each 
figure, the experimental data a t  70% chord are compared both with the theoretical 
profiles given by solutions of (10) with the viscosity coefficient of the laminar fluid 
(denoted by v, = 1) and the solutions with an eddy viscosity ten times the free- 
stream viscosity (denoted v, = 10) as an extremely simple model for the turbulence 
present in the experimental flows (note that (10) are unchanged if an eddy- 
viscosity model is used; only the Reynolds number, hence the definitions of the 
scaled coordinate and radial velocity change). Comparisons of swirl velocity are 
shown in figure 7. As can be seen, the v, = 1 profiles give the correct qualitative 
behaviour, although the core diameter is underpredicted. However, the experimental 
data points agree extremely well with the theoretical profiles including the eddy 
viscosity, both in the viscous core and the inviscid outer region. Experimental and 
theoretical axial velocity profiles are compared in figure 8. The agreement is again 
very good. The axial velocities measured at the three stations further upstream, not 
shown here, are also in good agreement with the theoretical results. As the maximum 
swirl velocity was different at  each chordwise station, this indicates that the coupling 
between the axial velocity in the core and the swirl velocity, an important feature of 
these flows, appears to be well described by the theory, even though the experimental 
flows were not truly self-similar. Comparisons of the static and total pressure 
coefficients given by the theory with the data from the above experiment are 
depicted in figures 9 and 10, respectively. 
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FIGURE 8. Comparison with Verhaagen & Van Ransbeeck : axial velocity at 70 Yo chord. 
Legend as figure 7 .  
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FIQURE 9. Comparison with Verhaagen & Van Ransbeeck : static pressure coefficient at 70% 
chord. Legend as figure 7. 
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FIGURE 10. Comparison with Verhaagen & Van Ransbeeck : total pressure coefficient at 70 Yo 

chord. Legend aa figure 7. 
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FIGURE 11. Incompressible vortex : axial velocity for various m. 

2.5. Solutions for m =+ 0 
The numerical solution of (10) for m 4 0 is essentially the same aa that described in 
the previous section, the main difference being that ( l o b )  is no longer decoupled from 
the other three, resulting in a sixth-order coupled system of equations. Solutions are 
presented (all for flows having f7- = 1) for m = +0.2, 0, -0.2 and -0.4, 
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FIGURE 12. Incompressible vortex : radial velocity for various m. 

corresponding to a favourable, zero and two different adverse pressure gradients. It 
should be noted that for external axial velocity fields with pressure gradients that are 
more adverse than m = -0.2, converged solutions were difficult to find numerically. 
In general, for non-zero values of m, convergence of the iteration is more difficult to 
achieve than for the uniform flow case, having become quite sensitive to the initial 
guess used in the iteration process. 

The corresponding solutions exhibit some interesting features. Axial velocity 
profiles are depicted in figure 11. For m > 0, corresponding to a vortex core in a 
favourable axial pressure gradient, the solutions show the same qualitative features 
as the m = 0 case ; however, the axial velocity peak is more localized and of greater 
magnitude, indicating that axial flow in the core is being accelerated. 

Form < 0, however, the character of the solutions changes dramatically. The axial 
flow in the inviscid region is still in the form of a jet-like profile, but the core flow 
shows a pronounced retardation, eventually stagnating and actually becoming a 
reversed flow (with respect to the edge axial velocity) as m decreases, that is, as the 
pressure gradient becomes more adverse. Plots of the radial velocity t? are shown in 
figure 12. For favourable or zero pressure gradient, the radial velocity is negative 
everywhere. As m becomes more negative, i.e. as the pressure gradient becomes more 
adverse, the radial velocity initially shows regions of positivity near the axis and 
eventually becomes positive everywhere. To better understand this behaviour, it is 
perhaps more illuminating to consider the entrainment velocity, given by 6 -n&Z, 
which for solutions with no reversed axial flow is everywhere non-positive, indicating 
that fluid crosses surfaces of constant 6 in the inward sense. 

When reversed axial flow is present in the core, the entrainment velocity is positive 
near the axis and changes sign further out, which corresponds to the presence of a 
recirculation zone in the vortex core having infinite axial extent. Qualitatively, these 
are similar to features seen in vortex breakdown, although the similarity formulation 
used obviously cannot describe behaviour with strong local axial variations such as 
is seen in actual breakdown structures. Finally, plots of total pressure coefficient are 
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FIQURE 13. Incompressible vortex: total pressure coefficient for various m. 
6 

shown in figure 13 for m = +0.2, 0 and -0.2. It can be seen that the total pressure 
loss in the core of the vortex increases as m decreases, that is to say that as the axial 
pressure gradient becomes less favourable, the dissipation in the viscous core 
becomes greater. 

3. Similarity solutions for compressible vortex cores. 
Not very much theoretical work on viscous compressible vortex cores has been 

done to date. One main area of interest is the effect of compressibility on the flow field 
vis-&vie the incompressible case. Hall (1966) mentions that the main effect of 
compressibility on the velocity field is a ‘radical change in the responsiveness of the 
internal core structure to changes in conditions on the outside of the core’, but 
demonstrates this only in a qualitative sense. The fact that a vortex over a given 
lifting surface in compressible flow may have a completely different structure than 
at low speeds has significant implications for slender wing configurations, where the 
upper-surface flow may be dominated by the vortices rolling up from the leading 
edge. The presence of compressibility may lead to extremely low densities and 
pressures in the vicinity of the axis of the vortex. Solutions to the inviscid equations 
of motion show that the density in the core can go to zero. Whether the presence of 
viscosity prevents the density from actually reaching a vacuum value is one question 
which solutions of the full equations of motion will address. 

Another interesting phenomenon which appears in connection with compressibility 
is the energy separation or ‘ RanqueHilsch ’ effect, where the presence of viscosity 
in a compressible flow with curved streamlines leads, in general, to non-constant 
stagnation enthalpy in the flow. This is an effect not generally seen in compressible 
flat-plate boundary-layer theory. In  the core of the viscous compressible vortex, 
there is a complicated balance of dissipative heating, cooling through core expansion 
and heat transfer between the core and the outer flow, the combination of which can 
lead to significant temperature gradients in the core of the vortex, as will be shown. 
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3.1. Governing equations 
In cylindrical polar coordinates, the (dimensional) equations expressing conservation 
of mass, momentum and energy for the steady, axisymmetric flow of a viscous, heat- 
conducting, compressible fluid are the following, with p, p ,  T denoting density, 
pressure and temperature of the fluid and u, v, w denoting the radial, azimuthal and 
axial components of velocity vector, respectively : 

Here, p,  C ,  and h are the viscosity, specific heat at  constant pressure and thermal 
conductivity of the fluid. If p, C, and h are specified as functions of the flow variables 
then the perfect-gas law p cc pT closes the equations. In the case of isentropic flow 
the gas is usually assumed to satisfy a polytropic relation p oc p y ,  where y is the ratio 
of specific heats of the gas. This results in the simple expression c2 = ypp-’ for the 
sound speed c. The viscosity p is generally a function of temperature which can be 
accurately modelled using Sutherland’s law or, more simply, a power-law relation; in 
many cases the Prandtl number Pr = pC, h-l (a non-dimensional combination of the 
transport coefficients of the fluid) can be assumed to be a constant which is O( 1) for 
most gases. 

3.2. Similarity formulation and solutions for the viscous compressible vortex 
Following the inviscid solutions of Hall for incompressible vortices, Brown (1965) 
presented inviscid solutions for a rotational, conically self-similar compressible 
vortex core. The flow was taken to be both isentropic and isenthalpic. Under these 
assumptions, the governing equations can be reduced to a single ordinary differential 
equation having the fluid density as the unknown and the axial velocity as the 
independent coordinate, along with an auxiliary equation relating these two 
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quantities to the physical coordinate. As was the case with the inviscid incompressible 
solutions of Hall, the generalization of this formulation to arbitrary power-law self- 
similarity is straightforward in the case of uniform external axial flow. The resulting 
equations are essentially the same as those originally derived by Brown, the only 
difference being the appearance of the growth rate parameter n, which again acts as 
a linear scaling for the radial velocity. Solutions of the equations show compressibility 
to have a regularizing effect on the flow, the axis swirl velocity now being zero for 
non-zero Mach number and the axial velocity reaching the limiting value associated 
with fully expanded flow there, density going to zero as the axis is reached. However, 
derivatives of swirl and axial velocity are unbounded on the axis, behaviour which 
is impossible in the presence of viscosity. 

To understand how a real compressible vortex behaves it is necessary to include 
the effects of viscosity and heat transfer. Following the analysis for the 
incompressible case, the similarity forms (5 )  for the velocities are taken, as well as the 
following for the density p and static temperature T :  

( 1 5 4  

(15b) 

where the Mach numberM, is based on the edge axial velocity Wand the sound speed 
there. The external density and temperature fields p,(z) and T,(z) are related to the 
external axial pressure field through the perfect-gas and polytropic relations. These 
forms are substituted into the steady, axisymmetric equations of motion (14) and the 
viscous limit as Re + co taken. Constant specific heats and Prandtl number are 
assumed ; this is equivalent to assuming that the viscosity and thermal conductivity 
have the same temperature dependence. Collecting lowest-order terms in the 
Reynolds number, the following eighth-order system of ordinary differential 
equations for the three velocity components, density and temperature is obtained in 
the case of uniform external flow: 

~ ( r ,  2 )  = pe(z)  P($) ,  
T(r ,  4 = T,(4 (7- 1)2M2, M, 

ps - 
9 

(p”s)’+F-nq5(p”G)’ = 0, 

The five boundary conditions on the velocities are the same as in the incompressible 
case, and are supplemented by the following conditions on the density and 
temperature : 

If the viscosity is assumed to have a power-law variation with temperature, i.e. 
,ii = (T/T,)“ (where T in this relation can be either the scaled or unscaled 
temperature), then the only parameters in these equations are the Prandtl number 

P(0) = 0,  #6(qJe) = 1 ,  T(Je) = l / [ ( y - l ) M 3 .  (16f  1 
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FIGURE 14. Viscous compressible vortex : swirl velocity (Ge 
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FIGURE 15. Viscous compressible vortex : axial velocity (Ge = 1). 
4 

Pr, the axi 1 Mach number at  the outer boundary Me, the viscosity-law exponen; u 
and the swirl velocity at the outer boundary, which determines the strength of the 
vortex. 

The equations are discretized and solved numerically as described in $4. Results 
for m = 0, n = t and Pr = 0.72 (air) and constant viscosity are presented in figures 
14-20, all for an edge swirl velocity fie = 1. Figures 14, 15 and 16 show swirl, axial 
and radial velocity distributions for various Mach numbers. At low Mach numbers, 
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FIQURE 16. Viscous compressible vortex: radial velocity (Ge = 1). 

the velocity plots look like those for the incompressible vortex. As the Mach number 
rises, the slope of the swirl velocity at the outer boundary decreases and then changes 
sign; the slope of the swirl velocity near the axis also decreases, indicating that the 
fluid in the core has a weaker rotation than in the incompressible case. The axial 
velocity peak in the core region becomes less pronounced as the Mach number rises ; 
at high Mach numbers the axial velocity profile appears very flattened out, the peak 
near the axis seen at low Mach numbers having completely disappeared. Note that 
at  the higher Mach numbers, the axial velocity rises very quickly to its maximum 
value near the outer boundary, but no longer reaches the limiting velocity as it did 
in the inviscid case. At  the higher Mach numbers the core wants to expand and fill 
up all of space, but is constrained from doing so by the outer boundary conditions. 
This behaviour is also seen in solutions of the inviscid equations as the Mach number 
increases, and makes a smooth match to an outer flow seem unlikely, if not 
impossible. While the current study sheds little light on this matching problem, the 
solutions should be representative of flows where the vorticity is introduced at  a 
finite distance from the vortex axis, as is the case in leading-edge flows. 

The radial velocity .ii is negative everywhere at very low Mach numbers, as it was 
in the incompressible case. AsM,  rises from zero, the radial velocity becomes positive 
in a region near the axis which expands outward as Me increases further, behaviour 
similar to that seen in the inviscid case. Figure 17 shows the static pressure coefficient 
distributions. As was seen in the inviscid case, the static pressure coefficient profiles 
become flattened out at higher Mach numbers and the magnitude of the drop in C, 
at the axis is reduced as the Mach number increases. It should be noted that this does 
not mean that the pressure drop in the core of the compressible vortex is actually less 
than that of the incompressible case - the pressure coefficient is simply normalized 
with pe W ,  which is also increasing asMe increases. The distribution of C,, however, 
is much less localized in the core at  higher Mach numbers than in the incompressible 
case. 

Figures 18 and 19 show distributions of density and temperature in the core. The 
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FIGURE 17. Viscous compressible vortex : static pressure coefficient (fie = 1). 
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FIQURE 18. Viscous compressible vortex: density (fie = 1) .  

d 

density reaches a minimum on the axis, but viscous effects always prevent a vacuum 
region, although for some of the cases studied, the axis density was less than one- 
thousandth of the free-stream density. The temperature decreases monotonically 
from the outer boundary to the axis for Mach numbers that are 0(1), and the 
magnitude of the temperature drop for a given vortex strength increases as the Mach 
number rises. This dissipation induced by the large velocity gradients at  the outer 
boundary makes the results somewhat suspect for larger Mach numbers - in the 
Me = 5 case (not plotted) the temperature actually rises slightly near the outer 
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FIWJRE 19. Viscous compressible vortex : temperature (4 = 1). 
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boundary before reaching an axis value only slightly lower than unity. At a given Me. 
the axis temperature drops as the swirl velocity increases from zero, but in all cases 
studied remains bounded away from zero. The achievable temperature minimum for 
a given Me was found to be near zero for low Mach numbers, although the swirl 
velocities required to achieve this are high enough to make an experimental 
simulation of such a flow doubtful. At  higher values of Me, the achievable axis 
temperatures are not so low, but they occur at reasonable values of the edgk swirl 
ratio, values on the order of unity, hence one would expect to see effects of these low 
temperatures in real flows. Visible evidence of low core temperatures can easily be 
seen in the water vapour which condenses in the cores of leading-edge or strake 
vortices shed at high angles of attack by fighter aircraft, for instance. 

Another interesting result is the effect of compressibility on the vorticity 
distribution in the core, shown in figure 20. For the incompressible vortex there 
exists a concentrated core of high vorticity near the axis. It can be seen from the 
solutions of the compressible equations that, as the Mach number increases, this 
vorticity peak becomes less pronounced and, at  Me = 2, has completely disappeared. 
This indicates that for the compressible vortex, the core, as defined by its increased 
vorticity, may be ill-defined or disappear altogether. 

Distributions of axial Mach number, not plotted here, look much like the plots of 
axial velocity ; one difference is that while the peak value of axial velocity decreases 
as Me becomes larger, the peak axial Mach number ratio M,,/Me increases 
monotonically. The solutions also show that the total Mach number has a maximum 
away from the axis, indicating that, unlike in the inviscid case, the compressibility 
of the flow is greatest at non-zero values of the radial coordinate in the viscous case. 

The effects of varying the Prandtl number and the viscosity law were also 
investigated, and show that at  a given edge swirl velocity and Mach number, the core 
temperature decreases as the Prandtl number is increased. This is because an increase 
in Prandtl number implies either a higher viscosity, which enhances the energy 
separation effect, or a lower thermal conductivity, which means less heat transfer 
into the cooler core. Either leads to a lower axis temperature. It was also found that 
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FIGURE 20. Viscous compressible vortex : vorticity (Ge = 1). 

as the viscosity-law exponent cr increases from zero, the core velocities become higher 
and the axis density decreases more rapidly with increasing Ge, apparently because 
as the axis is approached, the viscosity is dropping as the temperature drops. 

The above solutions show that the energy-separation effect can be quite 
pronounced - for free-stream axial Mach numbers of order one, the static 
temperature on the axis can reach values less than one-half the free-stream 
temperature for edge swirl angles on the order of 45’. 

4. Conclusions 
The approach developed in this paper leads to sets of ordinary differential 

equations describing a variety of axisymmetric self-similar vortical flows. This gives 
a reasonably unified framework in which to study the effects of flow parameters such 
as vortex strength, external axial pressure gradients and compressibility. 

The effects of Reynolds number and edge swirl angle on the velocity and pressure 
distributions through the vortex core have been well-documented elsewhere. The 
Reynolds number acts primarily to scale the extent of the core; the edge swirl angle 
sets the ‘strength ’ of the vortex, determining the magnitude of the axial velocity 
maximum and the static pressure minimum on the axis of the core. 

The effects of external axial pressure gradient and compressibility had not been 
adequately studied to date. The pressure gradient primarily affects the axial flow in 
the core, with favourable pressure gradients accelerating the core flow, and adverse 
pressure gradients retarding it, even to the point of stagnation or reversal of the flow 
on the axis. This behaviour is qualitatively similar to that seen immediately 
upstream of a vortex breakdown. It seems plausible that, although the similarity 
amumption is restrictive in the sense that local axial variations in the flow field are 
excluded, and the slenderness assumption cannot be expected to hold in a region 
where vortex breakdown has occurred, the solutions with m < 0 may give a 
reasonable idea of what happens locally immediately upstream of the breakdown. 
The parameter m, describing the axial variation of the external flow, is also shown 
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in the presence of viscosity to be linked to the parameter n,  governing the rate of 
growth of the viscous region, through the simple relation m = 1 -2n. For both 
incompressible and compressible inviscid flow, the rate-of-growth parameter n acts 
only to scale the radial velocity, effectively reducing the number of parameters by 
one. 

Compressibility has a regularizing effect on the solutions, an immediate result 
being that the velocities remain bounded, although their derivatives can be infinite 
in inviscid flow. The presence of viscosity, besides making gradients of all flow 
variables bounded and enforcing the condition of zero swirl on the axis, appears to 
prevent the creation of a vacuum in the core, although very low axis densities occur 
at  high values of the swirl intensity. In spite of the viscous dissipation in such flows, 
low core temperatures can be achieved even for vortices of moderate strength. 

In addition to providing insight about swirling flows in general, similarity 
formulations such as the ones presented, where the number of parameters is kept to 
a minimum, may also serve to provide useful comparison cases for large-scale 
numerical analyses, as well as a starting point for more general theoretical studies of 
the stability of swirling flows than have been advanced at present. 
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